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Keywords: World is living an overwhelming explosion of smart devices: electronic gadgets, appliances, meters, cars,
Internet of Things sensors, camera and even traffic lights, that are connected to the Internet to extend their capabilities,
CoAP constituting what is known as Internet of Things (IoT). In these environments, the application layer is
?QTTt decisive for the quality of the connection, which has dependencies to the transport layer, mainly when secure
ecurity

Performance evaluation

communications are used. This paper analyses the performance offered by these two most popular protocols

for the application layer: Constrained Application Protocol (CoAP) and Message Queue Telemetry Transport
(MQTT). This analysis aims to examine the features and capabilities of the two protocols and to determine
their feasibility to operate under constrained devices taking into account security support and diverse network
conditions, unlike the previous works. Since IoT devices typically show battery constraints, the analysis is
focused on bandwidth and CPU use, using realistic network scenarios, since this use translates to power

consumption.

1. Introduction

World is living an overwhelming explosion of smart devices, elec-
tronic gadgets connected to the Internet to extend their capabilities.
The current trends of users and manufacturers show even the fridges,
the furniture or the lamps are starting to be connected to the network.
This unprecedented number of physical objects or “things” embedded with
electronics, software, sensors, actuators, and connectivity to enable objects
to exchange data with the manufacturer, operator and/or other connected
devices is known as Internet of Things (IoT) [1].

The network has to face the first major problem associated to the
IoT: a huge amount of connected devices. This problem implies that
network solutions should be easily scalable and interoperable to assure
the correct implementation of IoT [2]. But handling a huge number of
devices is not enough, the quality of the performance and security are
also important. The quality is typically represented by the Quality of
Service (QoS).

In addition to the difficulty of handling such a huge number of
network nodes while assuring the required quality, these devices are
heterogeneous and often present additional constrains that limit their
operation; mainly, power consumption and storage constraints. For
these reasons, lightweight communication protocols have been devel-
oped and implemented to deal with these challenges. Focusing on the
application layer, there is no a unique protocol which serves all the
applications [3]: the choice is highly situation-dependent. Specifically,
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Constrained Application Protocol (CoAP) specified in [4] and Message
Queue Telemetry Transport (MQTT) defined in [5,6] are the two most
used standards today, and they stand as the two most powerful proto-
cols for IoT, although other protocols have been also used to a lesser
extent, such as Advanced Message Queuing Protocol (AMQP), Data
Distribution Service (DDS), Extensible Messaging and Presence Protocol
(XMPP) or even Hypertext Transfer Protocol (HTTP).

As the application layer is decisive to define the reliability, the
latency and the overhead of the connection, this work aims to offer a
detailed analysis of the advantages and drawbacks offered by the two
most popular protocols for the application layer, CoAP and MQTT. The
modes of operation of both protocols and their differences are explored
through the use of open-source implementations of both protocols.
Furthermore, since security vulnerabilities of the IoT communications
can lead to threats such as message forgery, tampering or eavesdrop-
ping, guidance from RFC7925 [7] will be followed to secure the data
exchange carried out by IoT devices. In particular, the proposed cipher
suites recommended by Tschofenig et al. [7] will be tested in terms
of network overhead and CPU usage increase, comparing them to
the non-secured scenario where the communications are not ciphered.
These two factors will determine the feasibility of the ciphering and
authentication methods in such a constrained environment, showing
the trade-off between security and performance.
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The main goal of this paper is to perform a detailed analysis of the
latency, bandwidth, and CPU usage, analysing their capabilities and
their feasibility to operate under device constraints. For that, a realistic
network scenario was deployed using a Raspberry Pi, as network node,
and a switch to emulate and configure the diverse network conditions
(e.g. packet losses).

This paper is organized as follows: Section 2 describes the IoT
protocols used in this study: CoAP and MQTT, highlighting advantages,
limitations, implementations and features analysed. Then, Section 3
analyses the related and previous work, identifying our contributions
beyond the literature. Section 4 explains the network scenario, configu-
rations, development and experiments performed to evaluate CoAP and
MQTT. We present an analytical study of these protocols in Section 5,
and then the results of the experiment are shown, discussed and com-
pared in Section 6. Finally, Section 7 concludes the paper and sketches
our future work.

2. IoT application layer protocols

As said before, there are several standardized protocols for IoT
application layer to lead Machine-to-Machine (M2M) communication.
This section briefly presents the two most popular protocols: CoAP and
MOQTT.

2.1. CoAP protocol

CoAP is defined in the RFC7252 [4] as a lightweight and simple
application protocol. It is a request-response application protocol based
on an asynchronous exchange of messages with optional reliability, as
it runs over User Datagram Protocol (UDP) which does not offer any
reliability.

In a CoAP network we have two types of nodes (Fig. 1): CoAP
servers, usually constrained devices (sensors or actuators), that can be
accessed or controlled using a REST API, and CoAP clients, devices
that want to retrieve some information or request some action from the
server. HTTP clients could also communicate with CoAP servers using a
proxy, which communicates itself with the CoAP server using the CoAP
protocol. The way clients and servers discover each other is outside
the scope of this paper, but fundamentally they can do it in two ways,
through DNS (mDNS and DNS-SD), or through CoAP resource discovery
(which can be multicast or based on directory).

CoAP defines four types of messages:

+ Confirmable (CON). These messages require an acknowledge-
ment to be sent by the other communicating part. When the
network does not cause packet losses, each CON message trigger
exactly one return message of type Acknowledgement or type
Reset. If no ACK or RST is received, after a certain time the CON
message is assumed to be lost and it is retransmitted.
Non-confirmable (NON). These messages do not require an ac-
knowledgement, offering no reliability.

Acknowledgement (ACK). An ACK message acknowledges that
a particular CON message did arrive. It is also able to carry
the response to the request, a process known as piggybacked
response.

Reset (RST). This message reports that a particular message
(CON or NON) was received, but it cannot be properly processed.
This event usually happens when the receiver has rebooted and
has forgotten some state that is required to correctly interpret
the message. Provoking a Reset message (e.g., by sending an
Empty CON message) is also useful to check of the liveness of
an endpoint: CoAP ping.

The format of the messages of the protocol has been designed to
be simple and light in order to reduce the typical overhead caused by
the headers of the protocols (see Fig. 2). All the messages start with

Computer Networks 197 (2021) 108338

a fixed-size 4-byte header, which is mandatory. Then, they could be
followed by a variable-length Token value (between O and 8 bytes), a
sequence of zero or more CoAP Options in Type-Length-Value (TLV)
format and an optional payload. Only the 4-byte header is mandatory,
the rest is optional.

The fields in the header include: Version (Ver), which identifies
the version of the CoAP protocol; Type (T) indicates the type of CoAP
message: 0 for CON, 1 for NON, 2 for ACK and 3 for RST; Token Length
(TKL) determines the length of the variable-length token field; Code is
an 8-bit field which indicates if the message is a request (0), a success
response (2), a client error response (4) or a server error response (5),
as well as indicating request method or response code; Message ID is
used to match messages ACK or RST with the CON message that caused
them.

It is important to notice that the message ID does not match requests
and responses, but the request (or the response) with its ACK or RST. It
is also used to detect message duplication. The token value should be
used instead if the matching request-response is required. This is the
purpose of the optional token field.

The options field allows to add a list of one or more options to
the request/response (e.g. Content-Format, Max-Age, ETag...). Probably
the most important options are Uri-Host, Uri-Path, Uri-Port
and Uri-Query. These options allow to specify the target resource
of a request and to locate it inside the server’s hierarchy through the
composition of an Uniform Resource Identifier (URI). The schemes
for URIs composition are the following ones (the usage of one or
another depends on whether the communication is being secured using
Datagram Transport Layer Security (DTLS) over UDP or not:

coap-URI="coap:""//" host[ ":"port]path-abempty["?" query]
coaps-URI="coaps:""//" host[ ":"port]path-abempty["?"query]

Focusing on the requests, there exist four methods: GET to retrieve
the current information specified through the request URI, POST to
create or update a resource, PUT to update or create a resource with
the given representation, and DELETE to remove a resource identified
by the URI. The method of the requests is specified in the Code field
of the CoAP header [4].

Typically, for the IoT, the most frequent method is GET. It is used
to retrieve information from a node of the network. In the default
behaviour, the node replies one answer with the current measurement,
however an optional observe extension has been defined in [8] to
instruct the server to send notifications to the client whenever the state
of the resource changes. This is similar to the publish/subscribe model
used in MQTT and MQTT for Sensor Networks (MQTT-SN), although
a bit different (there is no broker). We will not consider the observe
option in this work.

Having understood the types of CoAP messages and the messages
exchange process, three scenarios can be defined for a simple retrieval
of information (GET) depending on the required level of reliability and
the immediate availability of the response at the server. These three
scenarios are shown in Fig. 3 and their impact on the network are
analysed in this work.

The two firsts ones deal with Confirmable messages. In the scenario
A, the response is carried along with the Acknowledgement (piggy-
backed), while in the scenario B there is a separated response. Both
situations could happen and it depends on the implementation of the
server and on the immediate availability of the information. However,
servers are expected to prefer piggybacked responses to save network
resources both at the client and at the server. Finally, the scenario C
deals with Non-confirmable messages, so no ACK is needed and the
response is also sent in a NON message.

Scenarios A and B provide reliability. In the scenario A, if the GET
message is lost the transmitter will notice as the Acknowledgement will
not arrive. Then, it will be able to retransmit the message after a certain
period of time. If the Acknowledgement is the lost message, the timer of
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COoAP client

COoAP server \‘\\HTTP

(sensor)
CoAP /HTTP
gateway HTTP client
Fig. 1. CoAP system overview.
0 1 2 3
0123456789012345678901234567 8901
Verl T I TKL I Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ...
11111111 | Payload (if any) ...

Fig. 2. CoAP message format.

CON GET CON GET

T —
\_.‘——_A‘C_IS-‘______,__

CON RESP

NON GET

\

ACK+RESP | |——A%K_ NON RESP

(b) Scenario B

(a) Scenario A (¢) Scenario C

Fig. 3. Possible scenarios for a CoAP retrieval of information (GET).

the transmitter will eventually expire, retransmitting the GET message.
For the scenario B, same reasoning applies for both CON messages (the
request and the response).

By default, COAP messages are transported over UDP, but they can  Delay reduction for the data transmission. This is achieved by
also be sent over DTLS. According to RFC7252, four security modes are using a compact header and carrying the messages over UDP
defined: instead of Transmission Control Protocol (TCP), as HTTP does,
for example.

Minimization of power consumption as a result of the overhead
reduction achieved by the use of UDP and a very compact header.
Thanks to asynchronous data push, devices can sleep most of the
time and just send information when there is a state change. This
leads to a further reduction in power consumption.

Reduced complexity compared to protocols such as HTTP, re-

main advantages of the use of CoAP for the IoT can be summarized as
follows [9]:

» NoSec. DTLS is disabled. If needed, security should be provided
at lower layers, using IP Security (IPsec).

PreSharedKey (PSK). DTLS is enabled and the device keeps
a list of pre-shared keys associated to the nodes with which
can communicate using these keys. Key derivation functions are
used to obtain the keys that secure the connection. This scheme
corresponds to symmetric cryptography.

RawPublicKey. DTLS is also enabled in this mode. The device
has an asymmetric key pair (public and private) that has been
validated somehow (out-of-band). Asymmetric cryptography is
used to secure the session key exchange.

Certificate. Similar to the previous one, but in this case, the
public key pair comes with an X.509 certificate that binds it to its
subject and has been signed by some trusted authority, compliant
with a Public Key Infrastructure (PKI).

laxing the hardware requirements for IoT devices.

Certain flexibility for achieving reliability. CoAP defines the
Confirmable messages to counteract (if needed) the unreliable
behaviour of UDP, offering the devices and the users the flexibility
to use them or not.

End-to-end principle, because no intermediate brokers or gate-
ways are needed.

Interoperability with existing standards (e.g. HTTP) and net-
works.

2.1.1. Strengths and limitations
CoAP was designed to operate under constrained devices, lightening
the message exchanges and saving resources at the network nodes. The

These strengths of the CoAP protocol also lead to some of its possible
limitations [10]:
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..... MQTT subscriber

J MQTT

MQTT broker .
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Fig. 4. MQTT system overview.

+ Unreliability. If Non-confirmable messages are used, reliability
is not achieved as the protocol runs over UDP. Moreover, the use
of CON messages only confirm message arrival, not taking into
account any possible errors.

Lack of congestion control for Non-confirmable messages, giving
them the possibility to overrun the network.

Immaturity: the protocol is gaining popularity but it is still
evolving. The open-source distribution is leading to different
implementations of the protocol that might not be interoperable
with each other.

2.1.2. Implementations

There exist several open-source as well as private implementations
of CoAP. They can be grouped according to the devices they are
designed for (constrained devices, servers, browser-based applications
or smartphones) [11]. For this study, the focus was on implementations
for constrained devices and open source, which are summarized as
follows:

« erbium' for the Contiki operating system, which is a not popular
OS and lacks of multiplatform. One of its biggest disadvantage is
that there is no available documentation.

libcoap? implemented in the C programming language. It can be
used both in Contiki and POSIX systems, being multiplatform and
interoperable. It is well-documented and provides some examples.
It is one of the most popular implementations.

microcoap® implemented also in C. In contrast to libcoap, it can
only run over Arduino or POSIX systems. The library does not
implement the whole RFC.

cantcoap’ is an implementation in C, which focuses on the
encoding and decoding of messages, leaving the messages control
(i.e., timeouts, retransmissions, messages matching) for the user.
This added complexity has no interest for the purpose of this
work.

californium® is implemented in Java programming language.
It is focused on the server side, although it can be used to
implement a client. It is not designed for constrained devices, so
complexity and resource consumption could be bigger than the
ones especially designed for constrained devices.

For our work the choices were between libcoap and californium.
The rest of implementations were discarded due to already exposed
reasons, i.e., unknown operating systems, lack of multiplatform, exces-
sive complexity and/or lack of documentation. So, the final decision
was made according to the systems they were designed for; therefore,
libcoap was selected for being especially designed for constrained
devices (that are more frequent in the IoT scene).

1 https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-CoAP
2 https://1ibCoAP.net/

3 https://github.com/1248/microcoap

4 https://github.com/staropram/cantcoap

5 https://www.eclipse.org/californium/

2.2. MQTT protocol

MQTT aims to be simple, open, lightweight and to offer a high
bandwidth-efficiency, being a good candidate for machine communica-
tions in constrained environments. It is an open standard of OASIS [5].

MQTT is a publish/subscribe messaging protocol specially suitable for
the IoT. Its main feature is the reliability as it runs over TCP or over
similar protocols which offer the same features: ordered, lossless and
bi-directional communications [5].

As other publish/subscribe protocols, it has a topic-based architec-
ture: exchanged data is classified by hierarchically organized topics in
such a way that every message is associated with a topic. The clients
publish the messages to a certain topic and this message is received by
every other client subscribed to this topic (selective messaging). Then,
messages are only routed to destinations with matching topic interests.

The topic-based publish/subscribe protocols, like MQTT, typically
present a physical architecture consisting of three types of nodes: the
publishers, the subscribers and the broker [12] (Fig. 4):

» A publisher is any client that publishes a message associated to
any topic, typically a sensor. It is producer of the data. However,
the publisher condition is not exclusive: a client can be publisher
and subscriber at the same time of different topics or even of the
same topic.

A subscriber is any client that requests for information sub-
scribing to certain topics: it is the consumer of the data. As the
publisher case, subscriber condition is not exclusive.

A broker is a device that acts as the central server for the
information. It is in charge of receiving and maintaining the
topic interests of the subscribers and of receiving and routing the
published messages to the clients subscribed to its topic. It acts as
an intermediate filter for the clients, selecting the messages and
filtering by topic to only send the relevant information for every
client.

The main advantage of the architecture shown in Fig. 5 is that it
leaves all the complexity for the broker, so the clients can be really
simple and lightweight, because implementing this architecture dras-
tically reduces the number of connections that a client must handle
to communicate with all the nodes of the scenario: just one (with
the broker). By contrast, the broker must handle a high number of
connections but, typically, this is not a problem since the broker does
not have the constraints that the clients have.

The MQTT messages exchanged, between such nodes, consists of
a series of messages called MQTT Control Packets. The structure of
a MQTT Control Packet consists of three elements: a fixed header, a
variable header and a payload. The fixed header is mandatory and it
is present in all MQTT Control Packets. The variable header and the
payload are only suitable for some kinds of MQTT Control Packets [5].
The variable header can contains additional information, depending of
the type of message. The payload contains the application information,
the data to be exchanged.
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Fig. 5. MQTT data exchange architecture.

The fixed header format is shown in Fig. 6. The MQTT Control
Packet type field defines the types of packets such as connection
request (i.e., CONNECT (1)), publish (i.e., PUBLISH (3)), subscribe
(i.e., SUBSCRIBE (8)), unsubscribe (i.e., UNSUBSCRIBE (10)), ping
(i.e., PINGRESP (13) and PINGREQ), disconnect (i.e., DISCONNECT
(14)) and acknowledgements (i.e., CONNACK (2), PUBACK (4), SUBACK
(9) and UNSUBACK (11)). Besides, values 5, 6 and 7 define the PUB-
REC, PUBREL and PUBCOMP messages respectively. These messages
are additional messages triggered by a PUBLISH message when certain
levels of QoS are required. The following four bits are flags specific to
each type of MQTT Control Packet, e.g., with PUBLISH messages, these
bits allow to specify the level of QoS for the data exchange.

In a typical scenario, both the subscribers and the publishers start
their connection to the server at any time by the sending of a CONNECT
message and the reception of the corresponding CONNACK. Once they
are connected, each client subscribes to the topics it is interested in
with the sending of a SUBSCRIBE message and the reception of the
corresponding SUBACK. Any other client publishes information on a
topic with the sending of a PUBLISH message to the broker and then,
the broker forwards the PUBLISH message to the clients subscribed to
its topic. In these PUBLISH messages exchanged (both client—broker
and broker—client), three modes of QoS can be defined [12]:

* QoS 0 (At most once delivery). The messages are delivered ac-
cording to the capability of the network with no MQTT retrans-
mission or acknowledgement. The PUBLISH message is delivered
at most once. It is the simplest mode and it offers the lowest
overhead: a single PUBLISH message for a single exchange.
QoS 1 (At least once delivery). The PUBLISH messages must
be acknowledged by a PUBACK message, otherwise they are
retransmitted. This QoS level assures that the message reaches
the destination, but this could happen more than once due to
retransmissions.

QoS 2 (Exactly once delivery). The PUBLISH message is the first
message of a four-way handshake that assures that the message
arrives exactly once. The messages that form the handshake are
PUBLISH, PUBREC, PUBREL and PUBCOMP.

By default, MQTT messages are transported over TCP, but they
can also be carried over Transport Layer Security (TLS) acting as an
intermediate layer to provide security services.

2.2.1. Strengths and limitations
The main advantages of the use of MQTT as protocol for the IoT can
be summarized with the following list:

» Low overhead, due to the use of a compact header and small
packets, making the protocol feasible for low bandwidth connec-
tion.

+ Reliability as the protocol runs over TCP, the ordered arrival of
the messages is assured by the underlying layer of the network.

* QoS flexibility. The protocol defines different QoS levels to fit
different network requirements. Moreover, the level of QoS is
chosen for every topic subscription for every client, leading to a
great flexibility.
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+ Flow and congestion control provided by TCP, avoiding possi-
ble device/network overflow problems.

» Selective messaging. Through a topic-based architecture, MQTT
allows to selectively choose the information a node want to
receive.

+ Client simplicity. Due to the architecture of the protocol, the
implementation of the client is very simple: the complexity is left
for the broker. This enhances the energy efficiency.

However, MQTT also presents some important limitations:

» Need of a broker. The simplicity at the clients is achieved at the
expense of having a broker that acts as intermediate keeping a
high number of connections.

Connection-oriented. The protocol runs over TCP so it is
connection-oriented. The connections between the broker and

the clients are kept alive, worsening the energy efficiency. For
this reason, MQTT-SN was designed for very constrained devices.
This modification allows the clients to run MQTT over UDP at
the expense of including one additional device in the network: a
gateway that connects the MQTT-SN devices with the broker and
the rest of the MQTT network.

Security issues. Since MQTT does not add secure communication
support by default, TLS must be added as intermediate layer
between MQTT and TCP to secure the communications.

Single point of failure. The broker is a single point of failure in
the network, if it goes offline the whole network is useless.

2.2.2. Implementations

There exist several open-source implementations of MQTT, in par-
ticular:

» paho MQTT.® Multiplatform implementation of MQTT protocol
developed by Eclipse. Its source code is available in Java, C,
Python and some others programming languages. It is a client
library so it does not include the implementation of the bro-
ker, the most important node in the MQTT architecture. It is
well-documented and it is regularly updated.

mosquitto.” Mosquitto is a C implementation of MQTT broker
and client. It is also property of Eclipse Foundation. Although
the choice of the programming language is limited to C, it is
a complete implementation (broker+client) and it is up to date
and well-documented. Moreover, it is one of the most popular
implementations in the literature.

moquette.® It is a Java implementation of a MQTT broker. Its
software licence is property of Apache. It is usually used in
conjunction with Paho to build up a complete system (paho for
clients, moquette for the broker).

As mosquitto offers an implementation for the whole scenario using
just a single implementation, it was the final chosen one.

2.3. Summarizing features of IoT protocols

A summary of the main features of each IoT protocol described
previously is shown in Table 1.

6 https://www.eclipse.org/paho/
7 https://mosquitto.org/
8 https://moquette-io.github.io/moquette/
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Bit 7 6 5 4 3 2 1 0
Byte 1 MQTT Control Packet type Flag specific to each MQTT Control Packet type
Byte 2 Remaining length

Fig. 6. MQTT fixed header format.
PUBLISHER BROKER SUBSCRIBER PUBLISHER BROKER SUBSCRIBER

PUBLISH PUBLISH

PUBLISH

PUBLISH

PUBACK

Delete PUBACK

message Delete
messags Delete
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(a) QoS level 0

PUBLISHER
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BROKER
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(b) QoS level 1

SUBSCRIBER

&

PUBLISH
PUBREC
PUBREL
Delete
message PUBLISH
PUBCOMP
PUBREC
PUBREL
Delete
message
PUBCOMP

(c) QoS level 2

Fig. 7. MQTT Quality of Service (QoS) levels.

Table 1
Summary of IoT protocols, CoAP and MQTT.
CoAP MQTT
Standardization body IETF OASIS

Architecture Request-Response, Resource “observer" Publish-Subscribe

Transport UDP TCP (UDP can be used in MQTT-SN)

Security DTLS (transport), OSCORE (Object Security for TLS (transport), client authentication
Constrained RESTful Environments - application)

Header 4B-+variable 2B-++variable

Methods for RESTful GET, POST, PUT, DELETE No support

Message Types

4: CON, NON, RST, ACK

15: CONNECT, CONNACK, PUBLISH, PUBACK, PUBREC, PUBREL,
PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK,
PINGREQ, PINGRESP, DISCONNECT, AUTH

Resource id

URI

Topics

Strengths lightweight, end-to-end principle, asynchronous and asynchronous, reliability, Client simplicity, selective messaging
synchronous, flexibility and reliability (through CON
messages), interoperability

Limitations unreliable transport broker-dependent, only connection-oriented

2.4. At what layer should we deal with security support?

Security is always required and it is recommended to be used at
different layers. So a security protocol at the application layer may
be used in conjunction with security protocols at the transport layer,
doubling up security services, such as confidentiality, integrity and/or
authentication. Nevertheless, in IoT scenarios, overhead added by se-
curity protocols must be optimized, because it is a critical issue due to
IoT devices can be constrained in terms of memory, storage, processing,
energy, etc.

CoAP specification defines the use of DTLS, but also Object Security
for Constrained RESTful Environments (OSCORE) is defined to be used
at the application layer. MQTT does not define a standard mechanism
to provide security at the application layer (except an authentication
control packet, AUTH, and related properties). In scenarios where
IoT and non-IoT devices interact, the use of TLS/DTLS provides in-
teroperability. Most CoAP implementations supports only DTLS/TLS.
Likewise, MQTT implementations are compatible with the use of TLS.
In addition, DTLS/TLS comes with a builtin key exchange protocol and
authentication for different applications’ requirements, unlike OSCORE
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that relies on pre-shared keys. This does not currently have a native
key exchange mechanism, although standardized mechanisms are being
evaluated by the IETF, for instance, Ephemeral Diffie-Hellman Over
COSE (EDHOC) [13]. This could become a system vulnerability, as well
as not providing forward secrecy.

On the other hand, although OSCORE has a moderately better
performance than DTLS 1.2 regarding radio transmission overhead,
RTT and memory usage according to [14], DTLS supports short head-
ers, which have quite small overhead; therefore, overhead would be
very similar between DTLS short headers, DTLS v1.3 and OSCORE,
according to the IETF LWIG Working Group [15].

OSCORE encrypts only the data that are part of the payload, thus
allows decreasing overhead and increasing bandwidth usage and bat-
tery lifetime of the device. It is recommended to be used when in-
termediary (non-trusted) proxies are part of the end-to-end commu-
nication; besides, it is also proposed for secure one-to-many group
communications.

3. Related work

In this section, related works focused on the performance of the
protocols for the application layer of IoT are analysed. Firstly, we
analyse the works in chronological order, and then we group studies
developed with a Raspberry Pi, similar to our work.

In [12], Thangavel et al. propose the design of a common middle-
ware that supports CoAP and MQTT to offer a common programming
interface, easing the interoperability of the Wireless Sensors Networks
(WSNs). Such middleware was implemented and the performance of
both protocols was tested. The performance indicators used were the
delay and the total data transferred per message and the experiments
were conducted for different loss rates. The implementations used for
CoAP and MQTT were open-source implementations: 1ibcoap and
mosquitto, respectively. The results of the experiments revealed that
MQTT has lower delay than CoAP at low packet loss rates and higher
delay than CoAP at high loss rates. Besides, for small message lengths
and loss rates equal to or less than 25%, CoAP generates lower addi-
tional traffic than MQTT to ensure reliability [12]. Although this work
offers a very complete hardware description of the network scenario
and a general analysis of CoAP and MQTT in lossy environments, it
does not consider the different modes of operation of both protocols
neither the secure transmission of messages. In particular, the trade-
offs security versus performance and reliability versus performance are
not examined.

In [16], CoAP performance is assessed using californium libraries
and emulating the data transmission in a Mobile Ad-Hoc Network
(MANET). The assessment is compared with HTTP, therefore, the re-
sults show that CoAP performance is better than HTTP with respect
to delivery rate, delay, and overhead, mainly when using confirmable
messages to transmit small sized data.

Nitin Naik [17] explains the problem that arises with the different
messaging protocols for the IoT: no one supports all the requirements
of all types of IoT systems. For this reason, it is important to analyse
the characteristics of the available messaging protocols, focusing on the
strengths and the limitations of each one. The work aims to be a tool
for the users to decide the appropriate messaging protocol for their
IoT specific system according to different balances between features
(e.g., delay, bandwidth, power consumption, latency...). The protocols
used for the comparison were three protocols specifically designed
for IoT: MQTT, AMQP, CoAP, and their natural reference protocol
HTTP. This work results to be a good guide for an ordinary user to
choose among the four cited messaging protocols. However, it does
not consider dynamic network conditions: the network is considered
as lossless.

Morabito et al. evaluated the performance of CoAP, MQTT, and
HTTP through 4G and Wi-Fi connections in vehicular scenarios [18].
They compared two service provisioning approaches: cloud-based vs.
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edge-based, transmitting small-sized messages from an in-car on-board
unit. Their results showed CoAP outperforms MQTT (QoS 1 and 2) and
HTTP from throughput and latency perspective in different case studies
of the Vehicular Network (VN).

Larmo et al. [19] looked at the impact of the protocol stack on
performance over a narrowband IoT (NB-IoT) link. They used a sim-
ulated scenario of NB-IoT protocol stack (with 7 base stations and 3
sectors) in which small reports are sent from a sensor device to a central
cloud storage over a last mile radio access link. The results found
that while CoAP performs consistently better in terms of throughput,
latency, coverage, and system capacity, MQTT also works when the
system is less loaded.

Finally, we highlight four papers that use Raspberry Pi for measure-
ment the performance of CoAP and other IoT protocols. In [20], Thota
and Kim discuss and analyse the efficiency, usage, and requirements
of MQTT and CoAP, using a Raspberry Pi with Raspbian OS and a
temperature sensor in a simple experiment which contains one pub-
lisher, server and broker. They conclude that as the size of the message
being sent increases, CoAP handles more data than MQTT. In [21],
Tandale et al. compare the performance of CoAP, MQTT and HTTP
REST using a Raspberry Pi 3 and the aiocoap,’ mosquitto, and django'®
implementations of the protocols. They compare the number of bytes
consumed and the delay for each of the protocols under two different
networks: 4G and high speed broadband connection. The results show
that CoAP is more efficient in terms of time and bandwidth for smaller
payloads and its performance deteriorates as payload size increases.
In [22], Liri et al. investigated and analysed four protocols, namely,
CoAP, MQTT, MQTT-SN and QUIC, to understand the overhead of
obtaining data from an IoT device at a sink to potentially disseminate
this data downstream. For evaluation, the experiments were performed
in an emulated environment using VirtualBox VMs, as well as a subset
of them that was also run using Raspberry Pi. They measure delay and
total packets sent. Results show that in terms of overhead, CoAP is
the most efficient protocol. Another key finding from the experiments
is that for IoT protocols that use a fire-and-forget paradigm, such as
CoAP NON, MQTT QoS 0 and MQTT-SN QoS 0, the wait or keep alive
timers play a crucial role in performance. In these last works, the
study is conducted using Raspberry-Pi, but they do not consider the
effects of different security mechanisms in CoAP performance. Moraes
et al. compared AMQP, CoAP (confirmable with piggybacked response),
and MQTT (QoS 1) in terms of throughput, message size, and packet
loss [23]. They deployed two scenarios with three sensors connected
to a platform based on Raspberry Pi: the first experiment with a path
(without network failures) and the second one with two paths/routes
to the sensors (taking into account failures). The experiment results
indicated CoAP protocol provides the best results, followed by MQTT.

Regarding our previous work, Marti et al. presented an energy
consumption and network traffic study of CoAP and MQTT-SN [24].
The experiments presented evaluate the performance of these protocols
with different network configurations. The results showed that the
performance of these two light application protocols is pretty similar
when the total transmission energy consumption is obtained. Neverthe-
less, MQTT-SN is more efficient than CoAP since its client nodes have
less complexity than CoAP clients. In [25], our previous work showed
results of the CoAP analysis. So, this paper extends this last work with
MOQTT measurements and comparing them with the obtained by CoAP.

Summarizing, Table 2 shows the differences of our study respect to
the related works.

9 aiocoap (https://github.com/chrysn/aiocoap) is an implementation of

CoAP written in Python 3 using its native asyncio methods to facilitate
concurrent operations while maintaining an easy to use interface. It supports
DTLS, the observe option, as well as CoAP over TCP, TLS, and WebSockets,
among other CoAP options.

10 Django (https://github.com/django/django) is a Python-based free and
open-source web framework.
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Work Security Network Hardware-based
support Conditions IoT Scenario
Thangavel et al. [12] No loss rates L2 switch, laptop (servers), BeagleBoard-xm
(gateway/subscriber/publisher), netbook (Wanem)
Gao et al. [16] No loss rates, client mobility No
Naik [17] No No (lossless) No
Morabito et al. [18] No Vehicle speed VN: Edge-server, Cloud-server, In-Car On-Board Unit (Raspberry Pi 3)
Larmo et al. [19] No NB-IoT stack in ns-3 No
Thota and Kim [20] No No Desktop, Raspberry Pi
Tandale et al. [21] No No Raspberry Pi, public cloud servers
Liri et al. [22] No No Raspberry Pi, VMs (mainly)
Moraes et al. [23] No Network failures Raspberry Pi, sensors
Our work PSK, PKI loss rates L2 switch, Raspberry Pi, laptop

Switch Lynksys
EZXS88W

Raspberry Pi:
CoAP: server
MQTT: publisher

==Y
Virtual Host:
Network emulator
Virtual Host:
CoAP: n/a Virtual Host:
MQTT: broker CoAP: client

MQTT: subscriber

Fig. 8. Physical network scenario for CoAP and MQTT analysis.

4. Methodology

This section will depict the process of designing and implementing
the scenario to test the CoAP and MQTT protocols. This process implies
the deployment of the network scenario, the study of the possibilities
offered by the selected well-known implementations of the protocols
(i.e., libcoap for CoAP and mosquitto for MQTT), the configuration and
launching of the devices and the measurement setup.

4.1. Scenario setup

When evaluating the performance of a network protocol, it is im-
portant to set realistic network conditions to be consistent with real
scenarios. For this reason, an isolated network scenario was deployed
to run the experiments on it. Fig. 8 illustrates the deployed network
scenario for the analysis of the IoT protocols.

The devices that form the scenario and their purpose are depicted in
Table 3. It is important to remark that the broker device is only used in
MQTT scenarios as they need three devices for a single data exchange:
publisher (server), subscriber (client) and broker.

A Raspberry Pi 3 was chosen to act as server because many times
it is a device that is used to implement IoT (in home automation, for
example). Even if we cannot consider it as a constrained device, it is a
good approach. In particular, the Starter Kit Raspberry Pi 3 for Android
Things was used (Fig. 9). It is important to remark that Android Things
was not used during developing, it is just the denomination of the Kkit.
This set includes a jacket that is attached to the Raspberry Pi and
it includes buttons, sensors and different displays. For performance
experiments, a remote temperature sensor is used.

To emulate a network like the ones in Figs. 1 and 4, we connect
all the elements of our network scenario using the Ethernet switch.
In order to emulate different network conditions, the program NetEm
(Network Emulator) is used. This program allows the user to establish
diverse network conditions such as packet corruption, duplication,
reordering, delay or loss at the output of a network interface. It was

Raspberry Pi 3 Starter Kit

androidthir

Conten

Fig. 9. Raspberry Pi 3 Starter Kit for Android Things.

Virtual Host:
CoAP: n/a
MQTT: broker

o1 |

Virtual Host:
CoAP: client
MQTT: subscriber

Raspberry Pi:
CoAP: server
MQTT: publisher

Virtual Host:
Network emulator

Fig. 10. Logical network scenario for CoAP and MQTT analysis.

necessary to set a virtual machine to emulate the network conditions
as NetEm works in the Linux kernel and introduces the losses before
sending the packet through the interface. Then, if NetEm had been
used on the server (or on the client) the packets could not have been
captured, it would have been as if they had never existed. Using a
virtual host as network emulator and forcing the traffic to pass through
it solves this problem: the packets can be captured at the client (or at
the server) and lost packets can be detected.

Taking this into account, the logical network scenario considers the
network as isolated and forces the traffic between server, client and
broker (in the case of MQTT) to pass through the network emulator.
This logical scenario is shown in Fig. 10.

In addition, network configuration was necessary at the client to
force the traffic sent to the server or to the broker to pass through
the network emulator. This is achieved by adding two specific routes
for the IP addresses of the server and the broker via the IP address of
the network emulator. Analogous configuration was done for the server
and for the broker. The configuration for the network emulator forces
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Table 3
Description and purposes of the network scenario elements.
Element Device Purpose
Switch Lynksys EZXS88W To isolate the whole network scenario from the outside (Internet).
Server Raspberry Pi 3 + Rainbow HAT  To read information from a sensor and to run the server application
to send it.
Client Virtual machine (LINUX) To run the client application to get the information.

Network emulator Virtual machine (LINUX)

To emulate the desired network conditions (different packet loss
rates) with NetEm.

Broker (MQTT) Virtual machine (LINUX)

To run the broker application and to act as intermediate between
MQTT client and server. It is not used in CoAP scenarios.

the device to accept any traffic coming from the client or from the
broker and any traffic sent to the client or to the broker and then route
it. Same ciphersuites and security architectures were considered: PSK
and PKI to check both the symmetric and asymmetric cryptography.
Recommendations by [7] for TLS Profiles will be followed to meet the
security requirements for CoAP and MQTT protocols.

With this scenario setup we can emulate losses such as those that
can occur in a connection through the Internet between the different
elements of the network (CoAP clients and servers, or publishers,
subscribers and MQTT broker) and focus on studying the behaviour of
the application layer protocols and security schemes.

It is important to note that in IoT environments, wireless interfaces
such as ZigBee (IEEE.802.15.4), Bluetooth Low Energy (BLE), Z-Wave,
Low-power Wi-Fi (IEEE 802.11ah), LoRaWAN or WiFi (IEEE 802.11)
are frequently used. If the communication between the CoAP client
and server, or between the MQTT publisher/subscriber and broker is
a one hop communication using one of these wireless interfaces, then
the network model that we propose would not be suitable. We should
need to consider the details of the mechanisms of the wireless network
(PHY and MAC layers) that would solve most of the losses due to
transmission errors. We have decided in this work to focus on a wired
environment (Ethernet) that better allows us to draw conclusions about
the impact on the performance of the different application and security
level protocols.

4.2. TLS/DTLS decryption

In order to evaluate the performance of the protocols, request and
response packets must be correlated and matched to analyse parameters
such as the latency of the communication or the total consumed band-
width. So, Wireshark was used to capture the packets passing through
the interface and obtain the parameters and statistics.

When securing CoAP using DTLS or MQTT using TLS, captured
packets are encrypted and the correlation cannot be performed in an
easy way. Decryption was needed to correctly match the exchanged
messages. For this, session keys were obtained using the libssl
library and provided to Wireshark.

4.3. CoAP analysis

Once the network scenario has been correctly configured, the anal-
ysis of CoAP protocol can be done. During this section, the possibilities
offered by 1ibcoap are analysed.

4.3.1. Client and server implementation

The libcoap implementation offers a complete and friendly use of
the whole CoAP library. It includes two examples: client.c and
coap-server.c,'! which are simple implementations of a CoAP
client and a CoAP server, respectively, that can be launched from a

11 https://libcoap.net/doc/reference/4.2.0/

command terminal. These applications allow the user, amongst many
other options, to specify through command line the use of confirmable
or non-confirmable messages, an optional token for the CoAP header,
the deployment or not of secure communications using DTLS and the
CoAP URI of the resource in the server.

Moreover, the server offers two resources called time and async
that allow to examine the differences between a piggybacked and a
separate responses. The CoAP URI and the description of both resources
is offered in Table 4. Thanks to these two resources and the possibility
of specifying the use of non-confirmable messages, the three modes
outlined in Fig. 3 can be simulated.

The async resource includes a delay between the sending of the
ACK and the sending of the separate response. In order to make a fair
comparisons of both response modes (piggybacked and separate), the
code of the libcoap server was modified to set this delay to zero: the
server uses a separate response when the client demands the async
resource but it immediately sends it after the ACK with no delay.

The CoAP example server was modified to change the message sent
when time or async resources are demanded. When a request for
any of these two resources is received, the Raspberry Pi must sense the
temperature, using the Rainbow Hat Jacket connected to it. Then, the
CoAP server must receive this temperature value and attach it to the
response. The programming interface of the Rainbow Hat is coded in
Python, so a simple Python script for retrieving the temperature from
the sensor is used. Then, it is sent to the CoAP response for the async
and time resources.

With respect to the security support, these example applications
do not allow to easily specify a particular cipher suite when using
DTLS: they enable the use of the whole cipher suite list offered by
DTLS 1.2. Then, the client sends a set of 49 possible cipher suites in
the second ClientHello message of the DTLS handshake and the
server chooses by default a certain predefined cipher suite. However,
this behaviour can be corrected modifying the libcoap code to force the
negotiation to result in a particular cipher suite. Following recommen-
dations from [7], two cipher suites were included: one for PreShared
Key (PSK), PSK-AES128-CCM8, and one for Public Key Infrastructure
(PKI), ECDHE-ECDSA-AES128-CCM8. A PKI was deployed in ad-hoc
mode to generate the certificates required.

» PSK (Pre-Shared Key): This scheme assumes that there exist a
pre-shared secret between the two parties of the communication.
This secret can be directly used as master secret to cipher the
communication or it can be used to derive it.

» AES128 (Advanced Encryption Standard): It is a block cipher
scheme with a fixed block size of 128 bits used for encryption.
The key size can be 128, 192 or 256 bits. In this case, 128 bits
are used.

+ CCMS8 (Counter with CBC-MAC): It is a mode of operation for
block ciphers with fixed block sizes of 128 bits. It is used for hash
purposes.

Finally, including the above-mentioned modifications, these exam-
ples allow to emulate the three scenarios depicted in Fig. 3, to obtain
the temperature from the sensor, to secure the communication using
DTLS and to specify the desired cipher suite.
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Table 4

Description of time and async resources in libcoap.
Resource CoAP URI Description
time coap(s)://IPserver/time The current time and date are sent using CoAP with a piggybacked response.
async coap(s)://IPserver/async A configurable message is sent with CoAP using a separate response.

4.3.2. Experiment cases

Once the implementation code has been modified to meet the
requirements and the network scenario has been configured, the param-
eters to evaluate must be defined. In particular, there are three major
aspects to evaluate with the run experiments:

» The different levels of reliability offered by the CoAP protocol
represented by scenarios A, B and C (Fig. 3).

» The repercussion on the CPU usage and on the network per-
formance of the distinct security modes: no security, PSK and
PKI.

+ The effect on the communication performance of diverse network
conditions, defined by different packet loss rates.

To cover all the cases, nine experiments were run in the scenario
shown in Fig. 10 for each value of packet loss rate: the three scenarios
(A, B and C) in conjunction with the three security modes (NOSEC, PSK,
PKI). Besides, five different packet loss rates were tested (0%, 5%, 10%,
15% and 20%), leading to 45 total experiments for CoAP evaluation.
Each experiment consisted of the sending of 500 CoAP GET requests by
the client and each experiment was monitored using Wireshark network
analyser. The requests were run both serial mode and parallel mode, in
order to facilitate the task of matching the requests and responses and
automatically process them to obtain the latency of the communication.

Later on, the total bytes transmitted for every message and the time
difference between the request and the response could be extracted
from the Wireshark capture, correlating the messages using Matlab.
This information will be used as an estimate of the bandwidth and the
latency of the diverse modes of the protocol.

With respect to CPU usage analysis, PERF tool for Raspberry Pi OS
was employed. This tool allows to monitor, amongst other parameters,
the CPU cycles and instructions consumed by the 500 CoAP requests.

4.4. MQTT analysis

Following the same structure of the CoAP analysis, firstly,
mosquitto’s possibilities was analysed for broker, publisher and sub-
scriber implementation. Then, the security support of the protocol and
the cases to simulate are defined.

4.4.1. Broker, publisher and subscriber implementation

Mosquitto implementation offers a complete MQTT broker that can
be configured through a configuration file.!? This configuration file
allows to define the listening ports, the TLS configuration (certificates,
version, ciphers, etc.), the logging level and other parameters such
as the maximum QoS level or the maximum number of simultaneous
connections. The TLS configuration was mainly modified.

In order to analyse the impact on the communication of the dis-
tinct levels of QoS and to send the temperature measured by the
Raspberry sensor, the clients (both publisher and subscriber) must
be flexible enough to adapt themselves to these circumstances. Even
though mosquitto is a broker implementation, it offers an additional
package named mosquitto-clients. This package includes two
tools named mosquitto_pub and mosquitto_sub, that imple-
ments a simple publisher and a simple subscriber respectively. The
mosquitto broker and the mosquitto_sub tools remain active
until the process is killed. By contrast, the mosquitto_pub just sends
a single publish and it ends its execution.

12 https://mosquitto.org/man/mosquitto-conf-5.html
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As in the case of CoAP, different ciphering and authentication
schemes for MQTT protocol are evaluated following guidance of
RFC7925 [7]. Once again, PSK and PKI architectures are tested, com-
paring the bandwidth and the CPU usage associated to these two
different security approaches.

The proposed cipher suites do not depend on whether TLS or
its datagram version (DTLS) is used. Then, the same cipher suites
evaluated in CoAP over DTLS are tested in MQTT over TLS:

» PSK-AES128-CCMS8 for PSK architecture, assuming that both par-
ties share a secret. This can be achieved in mosquitto by launching
the publisher/subscriber specifying a certain secret and the iden-
tity of the client through the command line. In the case of the
broker, it has a file containing all the pre-shared secrets and the
identity of the clients.

ECDHE-ECDSA-AES128-CCMS8 for PKI, using secp256r1 as elliptic
curve. In the case of MQTT, the broker will be authenticated by a
certificate signed by a trusted Certification Authority (CA), so the
clients are able to verify its identity. It is possible to also generate
certificates for the clients but it is not usual as it increases the
occupied bandwidth and the complexity of the clients. We create
our own PKI for this purpose.

4.4.2. Experiment cases
Analogous to the experiment cases of the CoAP protocol, there also
exist three major aspects to evaluate with the MQTT experiments:

+ The effect of the different levels of reliability, in the case of MQTT
represented by the QoS. MQTT standard defines three levels (QoS
0, QoS 1 and QoS 2) represented in Fig. 7.

+ The repercussion on the devices CPU usage and on the network
performance of the use of TLS over MQTT with no security, PSK
and PKI modes.

» The effect on the MQTT communication performance of diverse
network conditions, defined by different packet loss rates.

Following CoAP methodology, nine experiments were run in the
scenario shown in Fig. 10 for each value of packet loss rate: the three
levels of QoS (0, 1 and 2) in conjunction with the three security modes
(NOSEC, PSK, PKI). These nine experiments were repeated for five
different packet loss rates (0%, 5%, 10%, 15% and 20%), resulting in 45
total experiments. Each experiment consisted of the publishing of 500
MQTT messages by the publisher, monitoring them using Wireshark
network analyser.

With respect to CPU usage analysis, as in the case of CoAP protocol
PERF tool was employed. In this case, the process to monitor was the
MQTT application located on the publisher’s side (Raspberry Pi).

Using the 45 above-mentioned experiments, the bandwidth and CPU
usage analysis could be carried out but in order to analyse the latency,
the scenario shown in Fig. 10 needed to be modified. In that scenario
there was no way but external clock synchronization to analyse the
time delay between the transmission of the PUBLISH message by the
publisher and the reception by the subscriber of the PUBLISH message
sent by the broker. Following [12], the publisher and subscriber were
run in the same virtual machine to avoid clock synchronization. Then,
the PUBLISH message sent by the publisher reaches the broker going
through the network emulator and then returns back to the same virtual
machine to reach the subscriber. The scenario to measure the latency
is shown in Fig. 11

Then, a new set of 45 experiments were run in the new scenario to
analyse the latency offered by MQTT protocol, leading to a total of 90
experiments.
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Fig. 11. Logical network scenario for MQTT latency analysis.

Table 5
Length of different CoAP messages.

Message App layer (bytes) On wire (bytes)
CON (request) 9 62
ACK 4 62
ACK + answer 28 72
CON (answer) 28 72
NON (request) 9 62
NON (answer) 28 72

5. Analytical performance study

In this section we are going to obtain analytically some performance
metrics of the CoAP and MQTT protocols under certain circumstances
which we can then contrast in Section 6 with the results obtained in
the experiments.

5.1. Analytical study of the CoAP protocol

The proposed scenario and the CoAP protocol are simple enough
to try to approach them by an analytical model and subsequently
contrasting the results with measurements in a real experiment.

5.1.1. No encryption and no loss

We are going to first estimate how many bytes are necessary to ob-
tain information from a sensor using unencrypted CoAP and assuming
a lossless network, depending on whether we are in scenario A, B or C
in Fig. 3.

Initially we will assume a network without losses. COAP messages
have a defined format, which we find in Fig. 2. COAP messages have a
fixed 4 bytes header, plus other optional fields that may vary depending
on the type of message or implementation. Specifically, the Token field
can be between 0 and 8 bytes long, the Options field length depends on
the length of the URI or the headers included in the request or response
(most of them optional, as in HTTP), and the Payload length depends
of the data being returned by the server. The CoAP implementation
in our experiment uses a Token length of 0 bytes, it includes the URI
option in the request (5 bytes) and the ETag, Content-Format and
Max-Age headers in the responses (9 bytes). The data returned by the
server is 15 bytes long. The Token field length and the options included
in the message may change in other CoAP implementations. With these
values, the size of the various CoAP messages at the application layer is
summarized in Table 5. To these lengths we must add the UDP header
(8 bytes), IP header (20 bytes in IPv4 and 40 bytes in IPv6; in the
experiment we have used IPv4), plus the link layer header, tail and
padding (IEEE 802.3 in our experiment). Taking these overloads into
account, the total length of the messages (linux cooked-mode capture,
SLL) is also shown in Table 5.

Taking into account the exchange of messages shown in Fig. 3, the
total number of packets and bytes exchanged to access the information
in the server when no encryption is being used and there are no losses
in the network is shown in Table 6.

Regarding the delay, it is approximately the same in all three cases,
and depends on the time it takes for the server to obtain the sensor
reading (T sensing), and on the round trip time (RTT) delay in the
network. In our experiment we use a Raspberry Pi that gets the value
from a temperature sensor. The time it takes to obtain this reading is
approximately 720 ms, so this delay dominates the others.
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Table 6

Number of CoAP packets and bytes exchanged.
Scenario Packets Bytes
A 2 134
B 4 258
C 2 134

5.1.2. Effect of encryption

As we have commented before, to send messages securely, CoOAP
uses the DTLS 1.2 protocol. This involves, on the one hand, the ex-
change of initial messages to establish the secure connection (hand-
shake) and, on the other, the encryption of the data that is exchanged
(CoAP request and response messages).

Regarding the DTLS handshake, it involves the exchange of mes-
sages presented in Table 7, which are basically the same for PSK and
PKI, except for the Certificate message that is sent in the case of PKI and
not in the case of PSK (the message size shown in the table corresponds
to the on wire length of the message, including link, network and
transport layer headers).

Following this exchange of messages, the CoAP application-level
messages are sent encrypted. Since AES128-CCMS8 is used in both cases,
the messages occupy the same regardless of whether PSK or PKI is used
(Table 8).

Finally two close_notify alert messages are sent to indicate that the
secure session is ending (Table 9).

Therefore, the number of packets and bytes sent in each of the CoAP
scenarios are as shown in Table 10.

Regarding the delay in obtaining the response, it has three compo-
nents. First, the transmission of messages between client and server.
Second, the time it takes for the server (the Raspberry Pi) to obtain the
sensor reading. Finally the time it takes to encrypt the request and the
response. Calling RTT the round trip time, T sensing the time it takes
to get the sensor reading, and assuming that the encryption/decryption
time of the request and response messages is T encrypt and T decrypt,
the delay from the start of the handshake until the client obtains
the reading from the sensor, ignoring the transmission time of the
messages, is in the three scenarios 4 RTT + 2 T encrypt + 2 T decrypt +
T sensing. Of all these times, the one that dominates in the case of our
experiment is T sensing, 720 ms, which makes the delay in the three
scenarios quite similar.

5.1.3. Effect of losses

The effect of losses on the performance metrics is more complex to
deal with analytically. We will now consider how network losses affect
the delay in getting the response for the case where no encryption is
being used.

As CoAP uses the UDP transport protocol, the loss of messages must
be detected and corrected (retransmitted) at the application layer. To
do this, the CoAP protocol implements in the confirmed mode (scenar-
ios A and B) an ACK TIMEOUT retransmission timer with a default
value of 2 s. If after transmitting a CON message this timer expires
without receiving ACK (either because the CON message has been lost
or because the ACK has been lost), the CON message is retransmitted
with a certain randomness factor ACK_ RANDOM FACTOR, to avoid
repeated collisions.

Calling p the probability that a packet is lost due to a transmission
error or network congestion, and g = 1 —p the probability that it arrives
successfully, calling again T_sensing the time it takes for the server to
obtain the sensor reading and RTT the round trip time in the network,
the average delay in getting a response when using a confirmed (CON)
message will be:

delay = T _sensing + ¢* X RTT + (1 — ¢*) x ¢*
X (RTT + ACK_TIMEOUT)+
+(1-¢*)?x¢* X QRTT + ACK_ TIMEOUT)+
+(1-¢*’%x¢* X BRTT + ACK.TIMEOUT) + -

(€8]
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Table 7
DTLS handshake messages length.
Message PSK PKI)
(bytes) (bytes)
— Client Hello 297 203
— Hello Verify Request 104 104
— Client Hello with cookie 329 235
— Server Hello, (Certificate), Server Key Exchange, Server Hello Done 214 953
— Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message 174 169
— New Session Ticket, Change Cipher Spec, Encrypted Handshake Message 318 302
TOTAL 1,436 1,966

Table 8
CoAP over DTLS messages length.

Table 12
MQTT messages length.

Message Bytes Message MQTT (bytes) Total (bytes)
CON (request) 82 CONNECT 14 + Client_ID 79 + Client_ID
ACK 77 CONNACK 4 70
ACK + answer 101
CON (answer) 101 PUBLISH 4 +_ 70 +
NON (request) 82 Topic_Length + Topic_Length +
NON (answer) 101 Data_Length Data_Length
PUBACK 4 70
PUBRECEIVED 4 70
Table 9
DTSL final messages length. PUBRELEASE 4 70
Message PSK PKI) PUBCOMPLETE 4 70
(bytes) (bytes)
— Encrypted Alert (close_notify) 75 75
— Encrypted Alert (close_notify) 75 75 X X .
second case, the CoAP recovery mechanism that we discussed earlier
comes into play.
Table 10
Total number of CoAP over DTLS packets and bytes. 5.2 Analytical model Of the MQTT protocol
Scenario Packets PSK (bytes) PKI (bytes)
A 10 1,769 2,299 The MQTT case is more difficult to model analytically when using
B 12 1,854 2,453 TCP as the transport protocol. TCP manages a series of timers, such
C 10 1,769 2,299 L -
as the delayed ACKs or the constant estimation of the retransmission
timeout (RTO), which means that the number of transmitted messages
Table 11 is not always the same (depending on whether the delayed ACKS are
CoAP delay against probability of packet loss. sent or piggybacked in a data segment).
P Delay (ms) We will now make an estimate of the number of exchanged packets
0 720 and the size of the messages for the different qualities of service
0,05 936 supported by MQTT, for the case in which we do not use encryption
8’15 1’122 and there are no losses.
0:2 1:845 Table 12 shows the size of the MQTT messages that we are going

Neglecting RTT against T sensing and ACK_TIMEOUT and assuming
that this sum has infinite terms (in fact, the maximum number of
retransmissions is limited) we have:

o0
delay = T_sensing + q¢* X ACK_TIM EOUT X 2 n(1 — g2y

(2)
n=1
Taking into account that Y>> | nx" = # we obtain:
: 1-4
delay = T _sensing + ACK_ TIMEOUT x > 3)

For T_sensing = 720 ms and ACK_TIM EOUT = 2000 ms, we show
in Table 11 the value of the delay for different values of probability of
packet loss p.

This analytical study is difficult to extend to the case when using a
security mechanism with CoAP. In this case, the losses are recovered in
different ways depending on whether they affect one of the 6 packets
that contain DTLS handshake messages, or if they affect one of the 2
or 4 messages (depending on the scenario) that carry CoAP protocol
messages. In the first case, DTLS implements a retransmission timer
of 1 s, which doubles in case of repeated loss of the message. In the
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to observe during the publication of a reading in a broker and while
it is sent to a subscriber. Some of the messages have a variable length,
which depends on the length of the client identifier (Client ID), the topic
name (Topic_Length), and the size of the published data (Data Length).
Note that in this table we show the size of the messages both at
the application layer (MQTT) and once transmitted over the network,
assuming that an IEEE 802.3, IPv4 and TCP transport is used (the result
will vary depending on the options implemented by the TCP stack, we
are considering a TCP stack that implements the timestamp option).

In our work we assume that publishers when they want to publish
a new value in the broker, open a TCP connection with the broker,
connect using a client ID, publish the data in a certain topic with a
quality of service (QoS 0, QoS 1 or QoS 2), and close the connection.
We will also assume that there is a single subscriber. In this case, the
total number of packets theoretically required to make this publication
is shown in Table 13.

For this calculation we have taken into account the TCP segments
that do not contain any data (such as SYN and FIN), as well as the
acknowledgements (ACK), which we have assumed are not delayed. In
practice, the delayed ACKs that are sent together with another data
segment imply that the number of packets sent can be reduced up to
the number that we also indicate in the table.

Regarding the delay until a subscriber receives a reading from the
publisher, assuming that the propagation time from the publisher and
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Table 13
Number of MQTT packets involved when publishing a new value.

Number packets Number of packets

QoS level (without delayed ACKs) (with delayed ACKs)
QoS 0 17 14
QoS 1 21 16
QoS 2 29 21

the subscriber to the broker is approximately the same, and taking into
account that the TCP connection establishment plus the connection to
the broker (CONNECT and CONNACK) takes 2 RTTs, from Fig. 7 we
see that the delay with QoS 0 and QoS 1 is 3 RTT, while with QoS 2 is
4 RTT.

We must take into account that in this case we are not consider-
ing the delay in obtaining the temperature reading from the sensor
(T sensing), since we consider that this is done immediately before the
sensor connects to the broker to publish the obtained value.

Due to the greater complexity of TCP mechanisms, we do not
address for MQTT the analytical study of the number of messages and
delay with encryption or loss in the network. We will study these cases
through our experiment in the next section.

6. Experimental results

This section contains the results of the processing of the measure-
ments obtained from the experiments, focusing on bandwidth effi-
ciency, CPU usage and latency of the communication. First, the results
for CoAP protocol and MQTT protocols will be shown independently
and, subsequently, the comparison between them.

The performance of the protocols has been evaluated using the
previously explained experiments according to three indicators:

+ The total amount of bytes transferred per message exchange as an
indicator of the bandwidth usage.

The average number of CPU cycles and the amount of packets
employed per message exchange. CPU cycles are an important
indicator of the power consumption as a higher number of CPU
cycles directly implies a higher power consumption and a bigger
need of processing capabilities [26]. Number of packets transferred
is also important, because the network interface power consump-
tion has a fixed part per transmitted packet and a variable one
that depends on the number of bytes of the packet.

The time delay between the requests and the responses as an
indicator of the latency of the communication.

In the figures, we show the average values over the experiments,
together with the confidence intervals with a 95% confidence level.

6.1. CoAP results

6.1.1. CoAP bandwidth

Fig. 12 shows the results in terms of bandwidth for the scenarios
A, B and C. The results coincide with those obtained analytically. It is
proved that ciphering methods drastically increase the bandwidth use
in all the scenarios:

» The results in the scenarios A and C are practically identical.
In these, the amount of bytes transferred with a 0% loss rate
increases from 134 bytes when no securing the communication to
1769 bytes when securing the communication in PSK mode and
2299 when using PKI mode. Both PSK and PKI modes add the
overhead of the DTLS negotiation but PKI mode is more greedy
in terms of bandwidth use as it includes the server’s certificate
exchange.
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+ In the Scenario B, with a 0% loss rate the bytes transferred in-
creases from 258 bytes in NOSEC mode to 1854 and 2453 bytes in
PSK and PKI modes respectively. There exists a minor difference
with respect to Scenario A caused by a bigger number of CoAP
packets needed for a single transfer (from 2 in scenario A to 4
in scenario B). However, in PSK and PKI modes this increase of
number of packets becomes insignificant when comparing modes
A and B.

In both scenarios, as the packet loss rate increases, the number
of bytes per message that are transmitted in PSK and PKI grows up
significantly as well, because of the needed packets per transmission is
greater and also their length.

6.1.2. CoAP CPU usage

Figs. 13 and 14 show the evolution of the CPU usage with the
different ciphering modes under different values of packet loss rates.

The results in terms of CPU cycles (Fig. 13) prove that ciphering
significantly increases the CPU usage, being PKI mode the most de-
manding one. Also, the no-reliability offered by Scenario C means a
decrease of the CPU cycles as the loss rate increases. The reason of
this effect is that some requests do not even reach the server and they
are not retransmitted by the client, so less requests are processed on
the server and this is translated into a lower CPU usage. Although
this reduction is achieved at the expense of losing some requests and
worsening the overall performance, some system would prefer this
mode when messages are not so important because they are periodically
repeated.

In addition to these conclusions, it can be observed that mode A
consumes more power than mode B and much more than mode C. This
difference with mode B is due to the need of an immediate response that
requires an additional effort on the server side. On the other hand, the
difference with mode C is due to the lack of reliability of the latter one,
avoiding the use of retransmission timers and the processing of the lost
requests.

Attending to the number of packets (Fig. 14), it can be observed
that the number of packets when comparing to NOSEC is significantly
increased by PSK and PKI modes but, in this case, in a similar fashion
(both follows the DTLS message exchange pattern). This increase of the
number of transmitted packets will increase the power consumption
of the network interface and then, it will also have an impact on the
overall power consumption.

6.1.3. CoAP latency

The time delay between the first and the last packets exchanged
for each transfer were measured during the experiments to evaluate
the latency offered. It is important to remark that these time delays
includes the time required by the Raspberry Pi to measure the temper-
ature (~ 720 ms). The results for the three scenarios under different
packet loss rates using the three proposed ciphering modes are shown
in Fig. 15. This results agree with those obtained analytically for NOSEC
in Table 11. The following conclusions can be drawn:

+ In lossless networks, the effect of the ciphering modes on the
latency is almost despicable in the three scenarios. For example,
the average time delays in a lossless scenario A are 720.04 ms,
723.1876 ms and 728.3494 ms for NOSEC, PSK and PKI modes,
respectively.

With higher loss rates secured communications are more ad-
versely affected than no-secured ones, observing a similar fashion
for PSK and PKI modes. This is due to the retransmission timers of
DTLS protocol and the exchange of a higher number of packets.
Thus, there is higher probability of having at least 1 packet lost
in a single message exchange when CoAP is run over DTLS.
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0% 5% 10% 15% 20% nications using scenario C are not affected in terms of time delay

Packet loss rate since a loss does not mean a delay but the end of the transfer.
The non-secured scenarios A and B behave similarly as the loss
rate increases. However, the time delay of scenario B is a little
higher that the one of scenario A due to a higher number of
packets per message.

PSK and PKI ciphering modes in scenarios A and B show a similar
fashion as the loss rate increases, being more affected by the losses
than the non-secured scenarios.

When securing the scenario C either with PSK or PKI, there exist
an infinite wait for a response. For this reason, only complete also cases in which the CoAP request is lost and the data transfer

(c) Bytes per message (C)

Fig. 12. Bandwidth usage by scenario (CoAP).

+ In the Scenario C, the loss of a CoAP application packet means

14
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is not completed. For this reason, the PSK and PKI cumulative
distribution function of scenario C may seem better than the ones
of scenarios A and B but it is important to remark that this is

achieved at the expense of losing some messages.
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6.2. MQTT results

The performance measurements of the MQTT protocol were done
analogously to the performance measurements of CoAP.

6.2.1. MQTT bandwidth

Fig. 17 shows the bandwidth usage for the different values of quality
of service (QoS 0, QoS 1 and QoS 2), measured through the amount of
bytes transmitted per message:

+ As it may be expected, the bytes transmitted per message are
higher for higher quality of service values since more packets are
needed for every exchange. In lossless networks (0% loss rate),
1057 bytes are exchanged for QoS 0, 1204 for QoS 1 and 1560
for QoS 2.

As in the case of CoAP, it can be observed that securing the MQTT
communications significantly increases the bandwidth use in all
cases. With a 0% loss rate the bytes transferred increase from
1057, 1204 and 1560 (for QoS 0, QoS 1 and QoS 2 respectively)
to 2009, 2280 and 2713 with PSK ciphering and to 3978, 4281
and 4685 for PKI ciphering. Analogous to the DTLS support in
CoAP, PSK and PKI modes increase the bandwidth usage by the
introduction of the TLS handshake. Moreover, PKI ciphering mode
includes the exchange of the server’s certificate, becoming again
the more demanding mode in terms of bandwidth usage.

With respect to the effect of the different packet loss rates, the
amount of bytes transferred grows up as the loss rate increases,
showing NOSEC, PSK and PKI similar slopes.

6.2.2. CPU usage

Figs. 18 and 19 show the evolution of these two parameters for
the different quality of services values, packet loss rates and ciphering
modes.

Focusing on Fig. 18, it can be stated, as in the case of CoAP,
that securing MQTT communications means a major increase of the
consumed power, being PSK CPU usage more moderate and the PKI
more intense. However, no difference seems to exist in terms of CPU
usage between the different qualities of service and a minor difference
exist between the different loss rate values.

This could be explained through two reasons:

+ CPU usage by TCP may not being monitored by PERF tool.
Although this tool counts the CPU cycles both at user and kernel
levels, the minor effect of the increase of the packet loss rate on
the CPU usage may be indicating that TCP processing is not being
considered.

» Mosquitto may be a very efficient implementation of MQTT,
reducing the CPU charge of the distinct quality of service modes.

With respect to the number of packets transmitted, more coherent
results are obtained. In this case, the number of packets clearly in-
creases as the packet loss rate grows up and there exists an important
different in the number of packets among the diverse quality of service
modes: in lossless networks QoS 2 requires 21, 26 and 27 packets in
average with NOSEC, PSK and PKI modes respectively, QoS 1 requires
16, 21 and 23 packets for the same modes and QoS 0 14, 18 and 19
packets. This values agree with those obtained for NOSEC in Section 5.

6.2.3. Latency

After deploying the scenario shown in Fig. 11, the time delay
between the transmission and the reception was measured for all the
45 experiments. There exist a very important difference with respect
to CoAP latency analysis: the receiver does not have to wait for the
Raspberry Pi to measure the temperature. When available, the Rasp-
berry Pi initiates the communication, contrary to what happens in CoAP
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Fig. 16. Cumulative distribution function of time delays per packet loss rate (CoAP).
protocol. For this reason, the 720 ms needed by the Raspberry Pi to + As in the case of CoAP, the effect of ciphering on the latency does
measure the temperature are not included in the latency of the protocol. not make a substantial difference in lossless networks for the three
Fig. 20 shows the latency estimates for the three quality of service quality of service values. For example, with QoS 2 the latency
values under different packet loss rates and the distinct ciphering values are 10.2 ms for non-secure communications, 21.4 ms for
modes. It can be stated that: PSK ciphered communications and 21.9 ms for PKI ones.
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complete the graph.

PSK and PKI ciphering modes follow similar cumulative distri-
bution functions as the loss rate increases, being more adversely
affected by the losses than the non-secured scenarios. However,
PKI ciphering produces a higher delay due to the need of ex-
changing the server’s certificate and the transmission of a higher
number of packets.

A higher value of quality of service means a higher time delay
served a substantial difference between the modes in terms of due to the need of exchanging a higher number of packets. For
latency, as it does exist in terms of bandwidth and CPU. For this reason, in the five graphs for a certain ciphering mode, the

(c) Bytes per message (QoS 2)

Fig. 17. Bandwidth usage by quality of service (MQTT).

+ As expected, a higher value of quality of service means a higher
value of latency for the communication. However, it is not ob-
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Latency (QoS0) the difference in terms of bandwidth usage or CPU. It is not even
comparable to the time difference between the secured and the
non-secured scenarios, being this one a more crucial issue.
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6.3. CoAP and MQTT comparison

Attending to the results shown in the two previous sections, a
-3 comparison between CoAP and MQTT is offered in terms of bandwidth
[ usage, CPU and latency:
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Fig. 20. Time delay per message by scenario (MQTT).

curves of QoS 2 are always more shifted to the right that the
corresponding QoS 1 ones, and these in turn are more to the right
than the corresponding QoS O ones. As stated before, the time
difference between the modes does exist but it is not as critical as
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- Bandwidth. The bytes per message exchange needed by both
protocols are represented in Fig. 22 classified attending to the
ciphering mode under test (NOSEC, PSK or PKI). As it can be
observed, the use of MQTT supposes an important increase of the
bandwidth used due to the deployment over TCP instead of over
UDP for all the ciphering modes. In lossless non-secured networks
the difference is substantial: the most reliable CoAP scenario (B)
employs just 226 bytes in average while the MQTT scenario with
the highest quality of services employs 1560 bytes.

When securing the communications, CoAP adds the overhead of
the DTLS handshake and MQTT adds the one introduced by the
TLS handshake. Even under this equal conditions, TLS still uses
TCP and DTLS uses UDP instead, making MQTT again heavier
than CoAP. Just in the case of PSK ciphering mode, the graphs of
CoAP and MQTT cross each other: CoAP can be heavier than the
MQTT scenario with the lowest quality of service for high packet
loss rates. The reason why this crossing does not happen for PKI
mode is that, due to specific needs of the implementations, the
server’s certificate needed by mosquitto is heavier than the one
needed by libcoap.

In conclusion, MQTT is more demanding than CoAP in terms
of bandwidth use due to the employment of TCP as transport
protocol. On the other hand, the usage of this protocol makes
the MQTT messages transmission reliable, what is not achieved
by CoAP just using UDP: CoAP protocol has to add and handle
its own reliability mechanism (modes A, B and C). However,
this substantial difference with respect to the bandwidth use can
constrain the usability of MQTT on very limited networks and
devices.

CPU usage. The packets transferred per message (PPM) ex-
changed are shown in Fig. 23 classified according to the ciphering
mode. Assuming that the network interface power consumption
has a fixed part per packet, a higher number of packets may
mean a higher power consumption in combination with a higher
number of total bytes transferred. Attending to this criterion,
MQTT turns to be also more demanding in terms of power
consumption: the use of TCP requires an additional overhead to
establish, control and finish the connections. This remains true
for all the ciphering modes as it can be clearly seen. Moreover,
the difference in terms of packets number is high: in lossless
non-secured networks most reliable CoAP mode (B) needs only
4 packets, while MQTT highest quality of service mode needs 21
packets.

In conclusion, the use of MQTT in constrained devices could be
limited due to a higher power consumption that is linked to
the need of a higher number of packets to maintain the TCP
workflow.

Latency: The average time delays measured for both protocols
using the diverse modes of operation are shown in Fig. 25. There
exists a substantial time difference between the two protocols:
MQTT seems to offer a smaller latency than CoAP. However, it
must be taken into account that when using CoAP the Raspberry
Pi has to measure the temperature, adding the delay associated
to this operation to the total time delay. When using MQTT, the
information is served when available, without adding the delay
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Fig. 21. Cumulative distribution function of time delays per packet loss rate (MQTT).

of the measurement. When subtracting the time needed for the retransmission timers of CoAP can be adjusted to avoid such
measurement, both protocols offer a similar behaviour in terms big delays, even improving the performance of MQTT when the
of latency. packet loss rate is high. However, by default the retransmission
However, MQTT retransmissions follow the TCP scheme for re- timers values of libcoap are high as it is shown in Fig. 24, leading
transmissions, what can lead to delays of several seconds. The to similar results to the ones offered by MQTT.
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Fig. 22. Bandwidth usage (CoAP vs MQTT).

7. Conclusions and future work

In this paper we have studied the performance of CoAP and MQTT,
both the unsecure and the secure versions, under different network
conditions using a simple network scenario, contrasted in some simple
situations with data obtained from an analytical model. The main
conclusions of our study are that the MQTT protocol is more bandwidth
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Fig. 23. Number of packets transferred per message (CoAP vs MQTT).

demanding as it adds the TCP overhead. On the other hand, it offers
different QoS and implicitly offers reliability (for running over TCP),
while CoAP just offers a simple QoS and reliability mechanism through

confirmable or non-confirmable messages. as expected, securing the
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communications through DTLS (CoAP) or TLS (MQTT) adds an impor-
tant increase of the bandwidth usage — more than 1000% in CoAP and
between 74 and just over 200% in MQTT - and the CPU usage — about
3.5% for PSK and 11.5% for PKI in CoAP and about 27% for PSK and
36% for PKI in MQTT - taking into account the modes of operation
and QoS. Also, secure communications are more adversely affected by
losses in terms of latency, than in lossless networks.

As future work, we are going to include direct energy measurements
to our study beyond CPU cycles and transmitted packets. We will also
use other network interfaces, such us WiFi or ZigBee, and consider more
realistic loss models in wireless environments, to study the performance
of the protocols in one-hop or multi-hop wireless networks. In addition,
we will analyse alternative cipher suites and cached information ex-
tension [27], which is not supported by libcoap, because these could
improve the overhead and CPU usage. Finally, we will evaluate the
OSCORE performance for CoAP and a more lightweight version of
MQTT, MQTT-SN.

CRediT authorship contribution statement

Victor Seoane: Software, Investigation, Writing — original draft,
Visualization. Carlos Garcia-Rubio: Conceptualization, Methodology,
Formal analysis, Writing — review & editing, Funding acquisition.
Florina Almenares: Conceptualization, Methodology, Validation, Re-
sources, Writing — review & editing, Supervision. Celeste Campo: Con-
ceptualization, Methodology, Validation, Resources, writing — review &
editing, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported in part by the Ministry of Economy and
Competitiveness (Spain) under the project MAGOS (TEC2017-84197-
C4-1-R) and by the Comunidad de Madrid (Spain) under the projects:
CYNAMON (P2018/TCS-4566), co-financed by European Structural
Funds (ESF and FEDER), and the Multiannual Agreement with UC3M
in the line of Excellence of University Professors (EPUC3M21), in
the context of the V PRICIT (Regional Programme of Research and
Technological Innovation).

References

[1] IETF (Internet Engineering Task Force), The Internet of Things, 2021, https:
//www.ietf.org/topics/iot/.

[2] AIOTI (Alliance for Internet of Things Innovation, Research and innovation
priorities for IoT: Industrial, business and consumer solutions, Tech. rep., Eu-
ropean Commission, 2018, https://aioti.eu/wp-content/uploads/2018/09/AI0TIL_
IoT-Research_Innovation_Priorities_2018_for_publishing.pdf.

[3] A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of
Things: A survey on enabling technologies, protocols, and applications, IEEE
Commun. Surv. Tutor. 17 (4) (2015) 2347-2376, http://dx.doi.org/10.1109/
COMST.2015.2444095.

[4] Z. Shelby, K. Hartke, C. Bormann, The constrained application protocol (CoAP),
RFC 7252, RFC Editor, 2014, https://tools.ietf.org/html/rfc7252.

[5] A. Banks, R. Gupta, MQTT Version 3.1.1, OASIS, 2014, http://docs.oasis-open.
org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-os.html.


https://libCoAP.net/
https://www.ietf.org/topics/iot/
https://www.ietf.org/topics/iot/
https://www.ietf.org/topics/iot/
https://aioti.eu/wp-content/uploads/2018/09/AIOTI_IoT-Research_Innovation_Priorities_2018_for_publishing.pdf
https://aioti.eu/wp-content/uploads/2018/09/AIOTI_IoT-Research_Innovation_Priorities_2018_for_publishing.pdf
https://aioti.eu/wp-content/uploads/2018/09/AIOTI_IoT-Research_Innovation_Priorities_2018_for_publishing.pdf
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/COMST.2015.2444095
https://tools.ietf.org/html/rfc7252
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

V. Seoane et al.

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Banks, E. Briggs, K. Borgendale, R. Gupta, MQTT Version 5.0, OASIS, 2019,
https://docs.oasis-open.org/mqtt/mqtt/v5.0/0s/mqtt-v5.0-os.html.

H. Tschofenig, T. Fossati, Transport Layer Security (TLS) / Datagram Transport
Layer Security (DTLS) Profiles for the Internet of Things, RFC 7925, RFC Editor,
2016, https://tools.ietf.org/html/rfc7925.

K. Hartke, Observing resources in the constrained application protocol (CoAP),
RFC 7641, IETF, 2015, https://tools.ietf.org/html/rfc7641.

J. Krishnamurthy, M. Maheswaran, Chapter 5 - Programming frameworks for
Internet of Things, in: R. Buyya, A.V. Dastjerdi (Eds.), Internet of Things, Morgan
Kaufmann, 2016, pp. 79-102, http://dx.doi.org/10.1016/B978-0-12-805395-9.
00005-8.

L.L. Silva, Internet of Things: Pros and Cons of CoAP Protocol Solution for Small
Devices, 2016.

C. Bormann, CoAP-RFC 7252 Constrained Application Protocol, 2016, https:
//coap.technology/.

D. Thangavel, X. Ma, A. Valera, H. Tan, C.K. Tan, Performance evaluation
of MQTT and CoAP via a common middleware, in: IEEE 9th International
Conference on Intelligent Sensors, Sensor Networks and Information Processing,
ISSNIP, 2014, pp. 1-6, http://dx.doi.org/10.1109/ISSNIP.2014.6827678.

G. Selander, J. Mattsson, F. Palombini, Ephemeral Diffie-Hellman over COSE
(EDHOC), Tech. rep., IETF Network Working Group, 2021, https://datatracker.
ietf.org/doc/html/draft-ietf-lake-edhoc.

M. Gunnarsson, J. Brorsson, F. Palombini, L. Seitz, M. Tiloca, Evalu-
ating the performance of the OSCORE security protocol in constrained
IoT environments, Internet Things 13 (100333) (2021) 2-16, http://dx.doi.
0rg/10.1016/j.i0t.2020.100333, https://www.sciencedirect.com/science/article/
pii/S2542660520301645.

J. Mattsson, F. Palombini, M. Vucinic, Comparison of CoAP Security Protocols,
Tech. rep., IETF LWIG Working Group, 2020, https://tools.ietf.org/id/draft-ietf-
lwig-security-protocol-comparison-05.html.

W. Gao, J.H. Nguyen, C. Lu, D. Ku, Assessing performance of constrained appli-
cation protocol (CoAP) in MANET using emulation, in: RACS ’16: Proceedings of
the International Conference on Research in Adaptive and Convergent Systems,
2016, pp. 103-108, http://dx.doi.org/10.1145/2987386.2987400.

N. Naik, Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP, in: IEEE International Systems Engineering Symposium, ISSE,
2017, pp. 1-7, http://dx.doi.org/10.1109/SysEng.2017.8088251.

R. Morabito, Z. Laaroussi, J. Jiménez, Evaluating the performance of CoAP,
MQTT, and HTTP in vehicular scenarios, in: IEEE Conference on Standards for
Communications and Networking, CSCN, 2018.

A. Larmo, A. Ratilainen, J. Saarinen, Impact of CoAP and MQTT on NB-IoT sys-
tem performance, Sensors 19 (1) (2019) http://dx.doi.org/10.3390/5s19010007,
https://www.mdpi.com/1424-8220/19/1/7.

P. Thota, Y. Kim, Implementation and comparison of M2M protocols for
Internet of Things, in: 4th Intl Conf on Applied Computing and Information
Technology/3rd Intl Conf on Computational Science/Intelligence and Applied In-
formatics/1st Intl Conf on Big Data, Cloud Computing, Data Science Engineering,
ACIT-CSII-BCD, 2016, pp. 43-48.

U. Tandale, B. Momin, D.P. Seetharam, An empirical study of application layer
protocols for IoT, in: International Conference on Energy, Communication, Data
Analytics and Soft Computing, ICECDS, 2017, pp. 2447-2451.

E. Liri, P.K. Singh, A.B. Rabiah, K. Kar, K. Makhijani, K.K. Ramakrishnan,
Robustness of IoT application protocols to network impairments, in: 2018 IEEE
International Symposium on Local and Metropolitan Area Networks, LANMAN,
2018, pp. 97-103.

T. Moraes, B. Nogueira, V. Lira, E. Tavares, Performance comparison of IoT
communication protocols, in: IEEE International Conference on Systems, Man
and Cybernetics, SMC, 2019, pp. 3249-3254, http://dx.doi.org/10.1109/SMC.
2019.8914552.

M. Marti, C. Garcia-Rubio, C. Campo, Performance evaluation of CoAP and
MQTT-SN in an IoT environment, in: Proceedings 13th International Confer-
ence on Ubiquitous Computing and Ambient Intelligence, UCAmI, vol. 31(1),
2019, pp. 1-12, http://dx.doi.org/10.3390/proceedings2019031049, https://
www.mdpi.com/2504-3900/31/1/49/pdf.

22

[25]

[26]

[27]

Computer Networks 197 (2021) 108338

V. Seoane, F. Almenares, C. Campo, C. Garcia-Rubio, Performance evaluation
of the CoAP protocol with security support for IoT environments, in: 17th ACM
Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous
Networks, 2020, pp. 41-48.

F. Kaup, P. Gottschling, D. Hausheer, PowerPi: Measuring and modeling the
power consumption of the Raspberry Pi, in: 39th Annual IEEE Conference on
Local Computer Networks, 2014, pp. 236-243.

S. Santesson, H. Tschofenig, Transport layer security (TLS) cached information
extension, RFC 7924, IETF, 2016, https://tools.ietf.org/html/rfc7924.

Victor Seoane is a network planning and optimization
engineer in Huawei. He received the M. Sc. Degree in
Telecommunications Engineering and in Advanced Commu-
nications Technologies, both in 2020 from University Carlos
IIT of Madrid. Contact him at vseoane@it.uc3m.es.

Carlos Garcia-Rubio is an associate professor at the De-
partment of Telematic Engineering of the University Carlos
III of Madrid. His research focus is centred in mobile and
wireless networked computing systems, and in the design
and performance evaluation of communication protocols,
mainly at the transport and application layers. He received
his Ph.D. degree from the Technical University of Madrid
in 2000. Contact him at cgr@it.uc3m.es.

Florina Almenares Mendoza received the M.Sc. degree in
telematics and the Ph.D. degree from the University Carlos
111 of Madrid, in 2003 and 2006, respectively. From 2004 to
2005, she was a Researcher and, then, became an Assistant
Professor. Since 2008, she has been an Associate Professor
with the Department of Telematics Engineering, University
Carlos III of Madrid. Her research interests include trust
and reputation management models, identity management,
secure architectures and cyber security, and risk assessment.
This research is applied to cloud computing, social net-
works, ubiquitous computing and the IoT, smart grids, and
smart cities. Contact her at florina@it.uc3m.es.

Celeste Campo is an associate professor at the Department
of Telematic Engineering of the University Carlos III of
Madrid. Her research interests include design and perfor-
mance evaluation of communication protocols for ad hoc
networks, energy aware communications, and middleware
technologies for pervasive computing. She received her
Ph.D. degree from the University Carlos III of Madrid in
2004. Contact her at celeste@it.uc3m.es.


https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://tools.ietf.org/html/rfc7925
https://tools.ietf.org/html/rfc7641
http://dx.doi.org/10.1016/B978-0-12-805395-9.00005-8
http://dx.doi.org/10.1016/B978-0-12-805395-9.00005-8
http://dx.doi.org/10.1016/B978-0-12-805395-9.00005-8
http://refhub.elsevier.com/S1389-1286(21)00336-4/sb10
http://refhub.elsevier.com/S1389-1286(21)00336-4/sb10
http://refhub.elsevier.com/S1389-1286(21)00336-4/sb10
https://coap.technology/
https://coap.technology/
https://coap.technology/
http://dx.doi.org/10.1109/ISSNIP.2014.6827678
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc
http://dx.doi.org/10.1016/j.iot.2020.100333
http://dx.doi.org/10.1016/j.iot.2020.100333
http://dx.doi.org/10.1016/j.iot.2020.100333
https://www.sciencedirect.com/science/article/pii/S2542660520301645
https://www.sciencedirect.com/science/article/pii/S2542660520301645
https://www.sciencedirect.com/science/article/pii/S2542660520301645
https://tools.ietf.org/id/draft-ietf-lwig-security-protocol-comparison-05.html
https://tools.ietf.org/id/draft-ietf-lwig-security-protocol-comparison-05.html
https://tools.ietf.org/id/draft-ietf-lwig-security-protocol-comparison-05.html
http://dx.doi.org/10.1145/2987386.2987400
http://dx.doi.org/10.1109/SysEng.2017.8088251
http://dx.doi.org/10.3390/s19010007
https://www.mdpi.com/1424-8220/19/1/7
http://dx.doi.org/10.1109/SMC.2019.8914552
http://dx.doi.org/10.1109/SMC.2019.8914552
http://dx.doi.org/10.1109/SMC.2019.8914552
http://dx.doi.org/10.3390/proceedings2019031049
https://www.mdpi.com/2504-3900/31/1/49/pdf
https://www.mdpi.com/2504-3900/31/1/49/pdf
https://www.mdpi.com/2504-3900/31/1/49/pdf
https://tools.ietf.org/html/rfc7924
mailto:vseoane@it.uc3m.es
mailto:cgr@it.uc3m.es
mailto:florina@it.uc3m.es
mailto:celeste@it.uc3m.es

	Performance evaluation of CoAP and MQTT with security support for IoT environments
	Introduction
	IoT application layer protocols
	CoAP protocol
	Strengths and limitations
	Implementations

	MQTT protocol
	Strengths and limitations
	Implementations

	Summarizing features of IoT protocols
	At what layer should we deal with security support?

	Related work
	Methodology
	Scenario setup
	TLS/DTLS decryption
	CoAP analysis
	Client and server implementation
	Experiment cases

	MQTT analysis
	Broker, publisher and subscriber implementation
	Experiment cases


	Analytical performance study
	Analytical study of the CoAP protocol
	No encryption and no loss
	Effect of encryption
	Effect of losses

	Analytical model of the MQTT protocol

	Experimental results
	CoAP results
	CoAP bandwidth
	CoAP CPU usage
	CoAP latency

	MQTT results
	MQTT bandwidth
	CPU usage
	Latency

	CoAP and MQTT comparison

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


